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1 Introduction

The flavor problem of the Standard Model of Particle Physics has two aspects. First, the

question arises what flavor is. Next, one can ask why the parameters of the flavor sector,

the fermion masses and the mixing matrices, take the values they do. A popular and

successful approach is to impose a non-abelian discrete flavor symmetry to explain certain

observed regularities. The nature of flavor is, in the context of flavor symmetries, therefore

usually reduced to the question as to the origin of that symmetry.

Two main types of symmetries are needed to construct the Lagrangian of the Standard

Model: space-time and gauge symmetries. In general adding an additional gauge group

to the Standard Model is a much simpler task than extending the space-time symmetry.

However, breaking a continuous flavor gauge group down to a non-abelian discrete subgroup

is a highly non-trivial phenomenological task. In particular, for such a breaking, large

representations of the continuous symmetry are needed, which can not couple directly to

the small representations in which the three generations of fermions would reside.1 It is

thus worthwhile to consider discrete flavor symmetries arising as extensions of the space-

time symmetry.

An extension of the space-time symmetry can only be achieved by an extension of

space-time itself. We thus need to work in an extra-dimensional framework. Such an

extension of space-time will enlarge the Poincaré symmetry. If the n extra dimensions are

compactified in an orbifold, the space-time symmetry will not be the full 4+n-dimensional

1For further details we refer to [2].
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Poincaré symmetry. However, depending on the exact compactification, there may be

residual discrete symmetries, which can then play the role of flavor symmetry.

This idea was first explored in [1], where two extra dimensions were assumed. This

can be considered the minimal number in this setup, as one extra dimension does not lead

to non-abelian discrete symmetries. For a specific 2-dimensional orbifold it was shown

there, that the residual Poincaré symmetry is the group S4, the group of permutations of

four distinct objects (if discrete symmetries, such as parity, are not taken into account,

i.e. if we only consider proper Lorentz transformations, the residual symmetry is A4).

A4 [3] and S4 [4] are both popular and phenomenologically successful as flavor symmetries,

especially for predicting tri-bimaximal neutrino mixing. In this paper we generalize the

discussion of [1] by considering all possible 2-dimensional orbifolds and calculating the

resulting symmetry. As it turns out, the resulting flavor symmetries are, in addition to A4

and S4, the three dihedral groups D4, D3
∼= S3 and D6

∼= D3 × Z2, all of which have been

widely used as flavor symmetries [5–7].

Another way of obtaining discrete flavor symmetries from orbifolds is inspired by string

theory and uses string selection rules [8]. We will not be using this approach and will only

be employing regular field theory on an orbifold. However, as discussed in [8], the two

approaches do not contradict each other: If we have an orbifold possessing an inherent

discrete symmetry, such as the ones we discuss in this paper, and then also impose the

string selection rules, we will end up with an enlarged flavor symmetry.

This paper is organized as follows. In section 2 we discuss the possible 2-dimensional

orbifolds and review how the discrete symmetries can be extracted from them. We also

explain, why a 1-dimensional orbifold is not sufficient to obtain a non-abelian flavor sym-

metry. In section 3 we discuss orbifold by orbifold which symmetry group arises from it.

In section 4 we discuss the relation between flavor group representations and brane fields

constrained to the fixed points in a certain twisted sector. Finally we conclude in section 5.

2 Orbifolding

We work in a 6-dimensional framework, where the two extra dimensions are compactified

on an orbifold T 2/ZN [9]. The co-ordinates in the two extra dimensions are denoted

by (x5, x6).

The 2-dimensional torus T 2 is obtained by identifying the opposite sides of

a parallelogram:

(x5, x6) → (x5, x6) + ~e1

(x5, x6) → (x5, x6) + ~e2 , (2.1)

where ~e1 = (1, 0), ~e2 = C(cos (α), sin (α)) are the basis vectors of the torus. We can always

choose ~e1 to point along the x5 axis and to be normalized, leaving two free parameters

defining ~e2, C and α, the length and the angle with respect to the x5 axis. In this torus,

the origin (0, 0) is identified with all points of the form

a~e1 + b~e2 , (2.2)

where a, b are integers.
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Aside from the torus basis, the orbifold is further defined by the abelian group ZN

which is modded out of the torus. This means that we further identify points related by

a rotation around the origin through integer multiples of an angle φ, with Nφ = 2π. The

choice of ZN is strictly constrained, as we discuss in the following [10]. The group ZN

is generated by one element, which corresponds to a rotation by the angle φ. Its matrix

representation in the Cartesian x5-x6 basis is thus

ω =

(

cos (φ) − sin (φ)

sin (φ) cos (φ)

)

. (2.3)

Since the origin does not change under the rotation, all the points which are identified

with the origin in the torus should be rotated to points which are also identified with the

origin, i.e.

ω(a~e1 + b~e2) = a′~e1 + b′~e2 , (2.4)

where a, a′, b and b′ are all integers.

Instead of using Cartesian coordinates, we can use the torus basis ~e1, ~e2. The matrix

representation of the generating element in this basis reads

ω̂ =

(

n1 n2

n3 n4

)

, (2.5)

where ω̂ = UωU−1 and U is the similarity transformation relating the Cartesian and Torus

bases to each other. In this basis we have
(

n1 n2

n3 n4

)(

a

b

)

=

(

a′

b′

)

. (2.6)

Due to the fact that a, b, a′, b′ are integers, the ni must also be integers. And since the

trace is a basis-independent quantity, we have

2 cos (φ) = Trω = Trω̂ = n1 + n4 , (2.7)

which implies that 2 cos (φ) is an integer and thus cos (φ) = −1,−1/2, 0, 1/2, 1 correspond-

ing to φ = π, 2π/3, π/2, π/3, 2π. This directly leads to a constraint for the ZN , and we are

only allowed to choose N = 1, 2, 3, 4, 6. This then also leads to a constraint concerning our

choice of torus basis vectors, since the rotational symmetry ZN needs to be consistent with

the symmetry of the torus. When modding out Z2, this is no constraint, as any basis is

consistent with reflections. For Z3 and Z6 we can only take the relative angle between the

basis vectors to be 60, 120 or 150 degrees. All three possibilities give the same orbifold.

In this paper, we choose the 60◦ lattice with basis vectors (~e1 = (1, 0), ~e2 = (1/2,
√

3/2)).2

Finally, when modding out Z4 the only possibility is a 90◦ lattice, with both basis vectors

normalized to a length of 1.

2The other two equivalent possibilities are the SU(3) lattice with (~e1 = (1, 0), ~e2 = (−1/2,
√

3/2)) and

the G2 lattice with (~e1 = (1, 0), ~e2 = (−3/2,
√

3/2)).
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We thus only have to discuss four different cases: T 2/Z2, T 2/Z3, T 2/Z4 and T 2/Z6.

For the last three, the orbifold is uniquely defined, while for the first case we need to

additionally discuss the effect of choosing a specific basis.

From these four orbifolds, we can then extract the residual Poincaré symmetry, which

will in all cases be a non-abelian discrete symmetry. This is done in the following way:

After choosing the orbifold, we determine the fixed points. A fixed point is a point for

which a rotation by an integer multiple of φ is equivalent to a lattice translation. These

points are potential candidates for the localization of 3-branes3 and thus the Standard

Model fermions can be taken to be brane fields, which are non-vanishing only at the fixed

points. The fixed points are divided into several twisted sectors, where the mth twisted

sector contains those fixed points for which a rotation by mφ corresponds to a lattice

translation. A given fixed point can lie in several twisted sectors.

We assume all fixed points to be physically equivalent. This then means that the rem-

nant translation and rotation symmetries are those which result only in a permutation of

the fixed points, i.e. only map fixed points to other fixed points. These remnant symmetry

operations are the elements of the residual Poincaré symmetry, and all that remains to be

done is to find the underlying group structure.

One can then immediately see, why we do not need to consider the 1-dimensional

orbifold S1/ZN : It has only two fixed points, and thus any symmetry group which permutes

them will be a subgroup of the permutation group for two distinct objects, S2 ≃ Z2, which

is abelian. Since we want to obtain a non-abelian discrete symmetry, we need to consider

at least a 2-dimensional orbifold.

3 Symmetries from orbifolding

In our discussion we parametrize the two extra dimensions by a complex number z ≡

x5 + ix6. Analogously to equation (2.1), the Torus T 2 is obtained by identifying the points

in the complex plane related by

z → z + 1 , (3.1)

z → z + γ , (3.2)

where the complex numbers (1, γ) correspond to the basis vectors (~e1, ~e2).

3.1 T 2/Z2

If we mod out a Z2 reflection symmetry, γ can be arbitrary in general. However, in

order to obtain a non-abelian symmetry, we have only two possibilities: The first one

is γ = eiπ/3, which gives us an S4 flavor symmetry, or an A4 symmetry if only proper

Lorentz transformations and translations (i.e. no discrete parities) are considered. The

other possible basis is γ = eiπ/2 = i. Since the case of S4 and A4 has already been

discussed in [1], we will only discuss the case γ = eiπ/2 = i here. This orbifold is shown in

3A 3-brane has three spatial dimensions.
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figure 1. The Z2 parity is defined by

z → −z . (3.3)

The fixed points are then given by (z1, z2, z3, z4) = (1/2, (1 + i)/2, i/2, 0). The fixed points

are permuted by the two translation operations

S1 : z → z + 1/2 , (3.4)

S2 : z → z + i/2 . (3.5)

Moreover, the fixed points are also permuted by the rotation

TR : z → ωz , (3.6)

where ω = eiπ/2 = i. One can also write these operations explicitly in terms of the

interchange of the fixed points,

S1[(14)(23)] : (z1, z2, z3, z4) → (z4, z3, z2, z1) , (3.7)

S2[(12)(34)] : (z1, z2, z3, z4) → (z2, z1, z4, z3) , (3.8)

TR[(13)(2)(4)] : (z1, z2, z3, z4) → (z3, z2, z1, z4) . (3.9)

From these elements we can define two generators,

A = [(13)(2)(4)][(14)(23)] = [(1432)] , (3.10)

B = [(12)(34)] , (3.11)

satisfying the generator relations,

A4 = 1 ,

B2 = 1 ,

ABA = B . (3.12)

This describes the dihedral group D4, the symmetry group of the square. The group theory

of D4, and of the dihedral groups in general, is discussed for example in [5]. Note that this

group is not enlarged if we include parity transformations.

3.2 T 2/Z3

When modding out Z3 we consider, without loss of generality, only the torus with a 60◦

lattice, as already mentioned in section 2. This corresponds to the choice γ = eiπ/3. This

orbifold is shown in figure 1. The operation of the generator of the Z3 symmetry is given by

z → ei2π/3z . (3.13)

The corresponding fixed points are (z1, z2, z3) = (0, i/
√

3, 1/2 + i/2
√

3). The translation

operations permuting these fixed points are

S1 : z → z + (1/2 + i/2
√

3) , (3.14)

S2 : z → z + i/
√

3 . (3.15)
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z1

z2z3

z4 e1

e2 e1+e2

x5

x6

z1

z2

z3

e1

e2 e1+e2

x5

x6

Figure 1. The orbifolds T 2/Z2 (left) and T 2/Z3 (right) with basis vectors ~e1, ~e2 and fixed points zi.

The square (left) and the triangle (right) formed by the fixed points, corresponding to the discrete

symmetries D4 and D3 respectively, are shown with dashed lines.

Moreover, the fixed points are also permuted by the rotation with respect to the origin

TR : z → ωz , (3.16)

where ω = eiπ/3 = i. Again, one can also write the symmetry operations in terms of a

permutation of the fixed points,

S1[(321)] : (z1, z2, z3) → (z2, z3, z1) , (3.17)

S2[(123)] : (z1, z2, z3) → (z3, z1, z2) , (3.18)

TR[(23)] : (z1, z2, z3) → (z1, z3, z2) . (3.19)

A possible parity transformation would be equivalent to the rotation TR and thus does

not need to be considered separately. We can formulate two generators

A = [(321)] , (3.20)

B = [(321)][(23)] = [(13)] , (3.21)

satisfying the generator relations,

A3 = 1 ,

B2 = 1 ,

ABA = B . (3.22)

This describes the dihedral group D3, the symmetry group of the triangle, which is iso-

morphic to S3 the permutation group of three distinct objects. As it is also a dihedral

symmetry, its group theory is discussed in more detail in [5].
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z1

z2z3

z4 e1

e2 e1+e2

x5

x6

z4

z5

z6

z1

z2z3

e1

e2 e1+e2

x5

x6

Figure 2. The orbifolds T 2/Z4 (left) and T 2/Z6 (right) with basis vectors ~e1, ~e2 and fixed points zi.

On the left, the fixed points which are both in the first and the second twisted sector are designated

by gray points, those fixed points which are only in the second twisted sector are designated by

black points. On the right, the fixed point which is in all twisted sectors is represented by a circle,

those fixed points which are only in the second twisted sector are designated by red (lighter gray)

points, while those fixed points which are only in the third twisted sector are given by blue (darker

gray) points.

3.3 T 2/Z4

When modding out the abelian group Z4, we have only one consistent choice of basis,

γ = eiπ/2 = i. The torus is the same one we used for T 2/Z2 to obtain the D4 symmetry,

as one can also see in figure 2. In fact, the fixed points will also be the same and we thus

obtain the same flavor symmetry. This is due to the fact that we obtain all fixed points

of the orbifold T 2/Z4 in the second twisted sector, where we only consider the squared

generator of Z4. This corresponds to a Z2 subgroup of Z4 and is thus fully equivalent to

our discussion for T 2/Z2 with a 90◦ lattice. The first twisted sector only contains the fixed

points z2 and z4; as both of them also appear in the second twisted sector no new fixed

points and thus no new residual translational or rotational symmetry operations arise due

to the larger abelian group, Z4. The unique symmetry we thus obtain is D4.

3.4 T 2/Z6

As for T 2/Z3 we use the 60◦ lattice, i.e. γ = eiπ/3. The orbifold is shown in figure 2. The

operation of the Z6 symmetry for the first twisted sector is defined by

z → ei2π/6z . (3.23)

For the first twisted sector, we have only one fixed point which is z4 = 0. For the second

twisted sector, the operation of the Z6 symmetry reads

z → ei2π/3z . (3.24)

– 7 –
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The fixed points of the second twisted sector are (z4, z5, z6) = (0, i/
√

3, 1/2(1+i/
√

3) which

are the same as in the case of T 2/Z3.

For the third twisted sector, finally, the operation of Z6 symmetry is written as

z → −z . (3.25)

The fixed points in this sector thus are (z1, z2, z3, z4) = (1/2, 1/4+i
√

3/4,−1/4+i
√

3/4, 0).

Combining all fixed points (z1, z2, z3, z4, z5, z6), we find that the fixed points are only per-

muted by residual rotation operations, i.e. translation symmetry is fully broken. These

rotations are

TR1 : z → eiπ/3z , (3.26)

TR2 : z → ei2π/3z . (3.27)

Moreover, if we assume the full Poincaré symmetry, we also have two parity operations

acting on the fixed points

P1 : z → z∗, (3.28)

P2 : z → −z∗, (3.29)

where z∗ denotes the complex conjugation of z.

We can write all of these symmetry operations in terms of a permutation of the fixed

points as

TR1[(123)(56)] : (z1, z2, z3, z4, z5, z6) → (z3, z1, z2, z4, z6, z5) , (3.30)

TR2[(132)] : (z1, z2, z3, z4, z5, z6) → (z2, z3, z1, z4, z5, z6) , (3.31)

P1[(23)(56)] : (z1, z2, z3, z4, z5, z6) → (z1, z3, z2, z4, z6, z5) , (3.32)

P2[(23)] : (z1, z2, z3, z4, z5, z6) → (z1, z3, z2, z4, z5, z6) . (3.33)

From these operators, we can form the generators

A = [(123)(56)] , (3.34)

B = [(23)] , (3.35)

satisfying the generator relations,

A6 = 1 ,

B2 = 1 ,

ABA = B . (3.36)

This defines the group D6
∼= D3×Z2

∼= S3×Z2. If we do not include the parity operations,

we effectively lose the generator B. The flavor symmetry then has only one generator and

is the abelian group Z6.

– 8 –
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4 Group representations

To construct a full model, one now needs to assign the fermion generations to representa-

tions of these flavor groups. The orbifold fixed points are interpreted as 3-branes, on which

the fermion fields are localized. The flavor symmetry operations which permute the fixed

points then act non-trivially on the fermion fields. Irreducible representations correspond

to relations among the field values at different fixed points; these relations are invariant

under symmetry operations. In general this means that one or more fermion generations

transforming under an irreducible representation of the flavor group will be “smeared out”

over all available fixed points. All representations can be reproduced in this way, the origin

of the flavor group from orbifolding thus does not offer any restrictions on the choice of

representations. Also, all representations will correspond in general to the field(s) being

non-vanishing at all fixed points. Thus, although the flavor symmetry as a whole has a

straightforward interpretation in the geometry of the orbifold, the different representations

do not.

This is at least a bit different for the last orbifold we have discussed, T 2/Z6. The

resulting flavor symmetry was D6, which is isomorphic to D3 × Z2. We observe that all

symmetry operations leave the origin, the fixed point z4, invariant. Thus a field which is

localized at the origin will transform trivially under the flavor symmetry. In addition the

subgroup D3 generated by A2 and B leaves the fixed points z5 and z6, i.e. the fixed points

of the second twisted sector, invariant. Fields localized only on these two fixed points thus

transform non-trivially only under the Z2 factor of the flavor group. Similarly, the fixed

points of the third twisted sector, z1, z2 and z3 are not permuted by the group element A3,

which generates Z2. Fields localized in this sector will thus only transform non-trivially

under the D3 factor of the flavor group. Fields transforming non-trivially both under D3

and Z2 will necessarily be non-vanishing in both the second and the third twisted sector.

For more details on the representation theory of D6 and the transformation properties of

representations under subgroups, see [5].

The orbifold T 2/Z6 thus offers the aesthetical appeal that different representations

correspond to different localizations in the orbifold and therefore have a more intuitive

interpretation in terms of the orbifold geometry. However also here all representations can

be reproduced, and the orbifold origin of the flavor symmetry does not offer further input

as to which representations to use for model building.

5 Conclusion

We have discussed all possible non-abelian discrete symmetries arising from 2-dimensional

orbifolds. In this context the flavor symmetries arise as a remnant symmetry of the full 6-

dimensional space-time symmetry. This remnant symmetry can then be interpreted as the

permutation symmetry of the orbifold fixed points. These fixed points in turn are taken to

be 3-branes, on which the three generations of Standard Model fermions reside. The flavor

symmetry then has a straightforward interpretation in terms of the geometry of the orbifold.

As in crystallography, the number of possible lattice structures and symmetry groups is

– 9 –
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strictly limited for orbifolds. The resulting flavor symmetries are all crystallographic point

groups, as was to be expected. The possible flavor groups we obtain are S4, A4, S3,D4, and

D6 ≃ D3 × Z2, where the first two were already discussed in [1]. All of these groups have

been widely used as phenomenologically successful flavor symmetries.

The question is of course what implications these findings have for flavored model

building. We found that, in all cases, the representation content of such models is not

limited by assuming an orbifold origin for the flavor symmetry. In the case of D6 at

least the representations can be interpreted in terms of localization of the fields in specific

sectors, but without a full theory of why certain fields are localized where, this does not

offer direct model building input either. One can thus take two major hints from this

general approach: First of all, it favors the well-known, small crystallographic groups as

flavor symmetries, due to the crystalline structure of the two extra dimensions. This is

however due to the fact that we have only considered two extra dimensions. Larger, more

complicated, flavor symmetries may arise when considering more extra dimensions. This

leads us to the second point: Further input for model building requires an extended analysis

of the extra-dimensional setup. This has been done in the context of string theory [8], where

interestingly enough the flavor group D4 also appears naturally. However, the results of

this paper can also be combined with regular extra-dimensional field theory. For example,

the flavor groups arising from the orbifolds need to be further broken, a process which may

actually be intimately connected with the extra dimensions themselves [11].
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